Modeling spatial and temporal variabilities in hyperspectral image unmixing

Pierre-Antoine Thouvenin
PhD defense, IRIT/INP-ENSEEIHT, Toulouse

Supervisor
Nicolas Dobigeon
Professor at IRIT/INP-ENSEEIHT, Toulouse

Co-supervisor
Jean-Yves Tourneret
Professor at IRIT/INP-ENSEEIHT, Toulouse

DGA contact
Véronique Serfaty

University of Toulouse, IRIT/INP-ENSEEIHT

October 17, 2017
A brief introduction to hyperspectral unmixing

- Airborne/spaceborne hyperspectral (HS) images: high spectral resolution (10 nm), comparatively lower spatial resolution (20 m × 20 m);
A brief introduction to hyperspectral unmixing

- Airborne/spaceborne hyperspectral (HS) images: high spectral resolution (10 nm), comparatively lower spatial resolution (20 m × 20 m);
A brief introduction to hyperspectral unmixing

- Airborne/spaceborne hyperspectral (HS) images: high spectral resolution (10 nm), comparatively lower spatial resolution (20 m × 20 m);
- Observations: mixture of several spectra corresponding to distinct materials (*endmembers*);

Figure 1: Hyperspectral unmixing: an illustration (taken from [Bio+12]).
A brief introduction to hyperspectral unmixing

- Airborne/spaceborne hyperspectral (HS) images: high spectral resolution (10 nm), comparatively lower spatial resolution (20 m × 20 m);
- Observations: mixture of several spectra corresponding to distinct materials (*endmembers*);
- Endmembers present in unknown proportions in each pixel (*abundance*, quantitative spatial mapping).

Figure 1: Hyperspectral unmixing: an illustration (taken from [Bio+12]).
Linear mixture model

Traditionally, observations are represented by a linear combination of the unknown endmembers [Bio+12]

$$\forall n \in \{1, \ldots N\}, \quad y_n = \sum_{r=1}^{R} a_{rn} m_r + b_n$$

(1)

$$Y = MA + B$$

(2)

Constraints (physical interpretability)

$$A \succeq 0_{R,N}, \quad A^T 1_R = 1_N, \quad M \succeq 0_{L,R}$$

(3)

- Several models are available in the literature to capture more complex interactions between light and matter [Hal+11; Dob+14; HPG14; ADT14] (e.g. multiple reflections).
- A given material is assumed to be fully characterized by a single signature.
Endmember variability

- Endmembers possibly affected by local environmental factors, varying acquisition conditions: spectral variability;
- Spatial variability: significant source of errors when estimating the abundance coefficients;
- Error propagation within unsupervised unmixing procedures \(\Rightarrow\) need for appropriate models.

\(\text{(a) Endmember variability (taken from [Gad+13])}\)

\(\text{(b) Spatial variability}\)

\textbf{Figure 2:} Endmember spatial variability: an illustration.
Variability: a prominent issue when considering multi-temporal hyperspectral (MTHS) images

- varying acquisition conditions;
- natural evolution of the scene (e.g. water, vegetation).

Figure 3: An example of a sequence of hyperspectral images, acquired at different time instants.
Variability accounting methods

Essentially two modeling paradigms
Variability accounting methods

Essentially two modeling paradigms

- Automated endmember bundles (AEB) [Som+12; Rob+98; Goe+13]
 - unmixing relies on spectral libraries, either extracted from the data or *a priori* available.
Variability accounting methods

Essentially two modeling paradigms

- Automated endmember bundles (AEB) [Som+12; Rob+98; Goe+13]
 - unmixing relies on spectral libraries, either extracted from the data or *a priori* available.

- Normal compositional model (NCM) [Ech+10; HDT15], Beta compositional model (BCM) [Du+14]
 - endmembers modeled as realizations of random vectors.

Figure 4: Different representations of endmember variability within the simplex enclosing the data (illustration taken from [HDT15]).
Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm

4. Conclusion and perspectives
Overview

1. A perturbed LMM to account for spatial variability
 - Model and problem formulation
 - Experiments on real data

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm

4. Conclusion and perspectives
Model

Perturbed LMM (PLMM) [Thouvenin et al., IEEE TSP 2016]

Observations are represented as a linear combination of possibly perturbed endmembers

\[\forall n \in \{1, \ldots, N\}, \quad y_n = \sum_{r=1}^{R} a_{r,n} (m_r + d_{m, r, n}) + b_n \]

\[Y = MA + [dM_1 a_1 \mid \ldots \mid dM_N a_N] + B \]

▷ In practice, problem tractable for a limited number of pixels per image.

Constraints

\[A \succeq 0_{R,N}, \quad A^T 1_R = 1_N, \quad M \succeq 0_{L,R} \]

\[M + dM_n \succeq 0_{L,R}, \quad \|dM_n\|_F \leq \nu, \quad \forall n \in \{1, \ldots, N\} \]

▷ This model can be used to formulate a constrained optimization problem.
Problem formulation

Optimization problem

\[
(M^*, dM^*, A^*) \in \arg \min_{M,dM,A} \left\{ F(M, dM, A) \text{ s.t. (6)} \right\}
\]

\[
F(M, dM, A) = \frac{1}{2} \| Y - MA - \Delta \|_F^2 + \alpha \Phi(A) + \beta \Psi(M) + \gamma \Upsilon(dM)
\]

Choice of the penalization terms:

- Φ: promotes spatially smooth abundances;
- Ψ: restrains the volume occupied by the $R - 1$ simplex enclosing the data;
- Υ: limits the energy of the captured variability.

Alternating minimization adopted: ADMM steps within a block coordinate descent (BCD), PALM (Proximal alternating linearized minimization [BST13]).
Penalization terms

Abundance penalization

Promote spatially smooth variations [CRH14]

\[
\Phi(A) = \frac{1}{2} \|AH\|_F^2
\]

(8)

where \(H \in \mathbb{R}^{N \times 4N}\) computes the difference between the abundances of a pixel and those of its neighbors.

Endmember penalization

Approximate the volume occupied by the \((R - 1)\)-simplex enclosing the data [Ber+04]:

\[
\Psi(M) = \frac{1}{2} \sum_{i \neq j} \|m_i - m_j\|_2^2.
\]

(9)
Estimation algorithm (I)

Two estimation algorithms considered: BCD/ADMM and PALM algorithms.

- BCD/ADMM unmixing algorithm [Thouvenin et al., IEEE TSP 2016]
 - no convergence proof (approximate BCD).

Algorithm 1: PLMM-unmixing: a BCD/ADMM algorithm. Each sub-problem resulting from the decomposition of the optimization steps is solved by ADMM.

Data: \(Y, A^0, M^0, dM^0 \)

begin

\(k \leftarrow 0; \)

while stopping criterion not satisfied do

(a) \(A^{k+1} = \arg \min_{A} F(M^k, dM^k, A) ; \)

(b) \(M^{k+1} = \arg \min_{M} F(M, dM^k, A^{k+1}) ; \)

(c) \(dM^{k+1} = \arg \min_{dM} F(M^{k+1}, dM, A^{k+1}) ; \)

\(k \leftarrow k + 1; \)

Result: \(A^{k+1}, M^{k+1}, dM^{k+1} \)
Estimation algorithm (II)

- PALM algorithm [BST13; CPR16]
 - sequence of iterates proved to converge to a critical point of the objective function (based on the Kurdyka-Łojasiewicz property).

Algorithm 2: PALM algorithm to estimate the parameters of the PLMM.

Data: \(Y, A^0, M^0, dM^0 \)

begin

\[
\begin{align*}
 k &\leftarrow 0; \\
 \textbf{while} & \text{ stopping criterion not satisfied } \textbf{do} \\
 & \text{ // Abundance update} \\
 & \text{ for } n = 1 \text{ to } N \text{ do} \\
 & \quad a_{n}^{k+1} = \text{prox}_{\iota S_R} \left(a_{n}^{k} - \frac{1}{\eta_n} \nabla a_n f \left(a_{n}^{k}, M^k, dM_n^k \right) \right); \\
 & \text{ // Endmember update} \\
 & M^{k+1} = \text{prox}_{\iota \{C^k \}} \left(M^k - \frac{1}{\mu^k} \nabla M F \left(A^{k+1}, M^k, dM^k \right) \right), \quad C^k = \max \{ 0, \max_n -dM_n^k \}; \\
 & \text{ // Variability update} \\
 & \text{ for } n = 1 \text{ to } N \text{ do} \\
 & \quad dM_n^{k+1} = \text{prox}_{\iota \{ \| \cdot \|_{F \leq \nu} \} + \iota \{ \cdot \geq -M^{k+1} \}} \left(dM_n^{k} - \frac{1}{\nu_n} \nabla dM_n f \left(a_{n}^{k+1}, M^{k+1}, dM_n^k \right) \right); \\
 k &\leftarrow k + 1; \\
\end{align*}
\]

Result: \(A^k, M^k, dM^k \)
Experiments on real data (I)

Moffett scene:

- 50 × 50 image acquired over Moffett Field (CA) in 1997;
- scene partly composed of a lake and a coastal area;
- 189 out of the 224 available spectral bands are exploited (water absorption bands removal)
- previous studies available for this scene [Dob+09; Hal+11; EDT11]
Figure 5: Abundance maps estimated for the Moffett scene.
Experiments on real data (III)

- Variability energy concentrated on interface areas (possible nonlinearities).

Figure 6: Spatial distribution of the variability w.r.t. each endmember estimated for the Moffett dataset. The maps are presented in terms of the variability energy for visualization purpose ($\|d_{r,n}\|_2/\sqrt{L}$ for the rth endmember in the nth pixel).
Experiments on real data (IV)

- Variability peaks: result from spectral bands with a poor SNR.
- Notable estimation improvement for the water signature.

Figure 7: Endmembers estimated for the Moffett scene (red lines), VCA in black, and variability in cyan.
Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images
 - Context and motivations
 - Model and problem formulation
 - Experiments on real data

3. A partially asynchronous distributed unmixing algorithm

4. Conclusion and perspectives
Context and motivations

- **Data:** multi-temporal hyperspectral (MTHS) images
 - similar materials expected to be observed over time;
 - exploit temporal information redundancy (possibly smooth variations of the parameters);
 - significant size of the data may preclude the use of batch procedures.
- Varying acquisition conditions may affect the shape and the amplitude of the endmembers.

![Sequence of hyperspectral images](image)

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15

Figure 8: Sequence of hyperspectral images analyzed in this section.
As a first approximation, endmember variability is assumed to be uniform on each image

⇒ significant reduction in the number of unknown parameters.

PLMM variant [Thouvenin et al., IEEE TIP 2016]

\[Y_t = (M + dM_t)A_t + B_t, \quad \forall t = 1, \ldots, T \] \hspace{1cm} (10)

Constraints

\[M \succeq 0_{L,R}, \quad A_t \succeq 0_{R,N}, \quad A_t^T 1_R = 1_N \]

\[\left\| \frac{1}{T} \sum_{t=1}^{T} dM_t \right\|_F \leq \kappa, \quad \|dM_t\|_F \leq \nu. \] \hspace{1cm} (11)
Problem formulation

Proposed approach: online unmixing – the available data are sequentially processed to estimate the mixture parameters (based on [Mai+10])

\[\Rightarrow \text{problem formulated as a two stage stochastic program} \]

Problem statement

\[
\min_{M \in [0,1]^L \times R} g(M) = \mathbb{E}_{Y,A,dM} \left[f(Y, M, A, dM) \right] \quad \text{s.t. (11)}
\]

\[
f(Y, M, A, dM) = \frac{1}{2} \| Y - (M + dM)A \|_F^2 + \alpha \Phi(A) + \beta \Psi(M) + \gamma \Upsilon(dM).
\]

where \(\Phi \) and \(\Upsilon \) promote smooth temporal variations of the associated parameters.

Stochastic approximation

\[
g_t(M) = \frac{1}{2t} \sum_{i=1}^{t} \| Y_i - (M + dM_i)A_i \|_F^2 + \beta \Psi(M)
\]

\[
= \frac{1}{t} \left[\frac{1}{2} \text{Tr}(M^TMC_t) + \text{Tr}(M^TD_t) \right] + \beta \Psi(M) + c.
\]
Two stage stochastic program

(see, e.g., [RX11])

- acquire an HS image Y_t;
- estimate the corresponding abundance and variability terms, solution to a first optimization problem (first stage problem)
 \[
 (A_t, dM_t) \in \underset{(A,dM) \in A_R \times D_t}{\arg\min} f(Y_t, M^{(t-1)}, A, dM);
 \] (12)
- update the endmember matrix using the newly extracted information, as a solution to the second stage problem
 \[
 M^{(t)} = \underset{M \in M}{\arg\min} \hat{g}_t(M).
 \] (13)
Proposed algorithm
[Thouvenin et al., IEEE TIP 2016]

Remark: a convergence result can be obtained (under milder assumptions than those considered in the manuscript) by interpreting the proposed algorithm as an instance of the BC-VMFB algorithm [CPR16].

Algorithm 3: Online unmixing algorithm.

Data: $M^{(0)}, A_0, dM_0, \alpha > 0, \beta > 0, \gamma > 0, \xi \in]0, 1]$

begin

\(C_0 \leftarrow 0_{R,R} \);

\(D_0 \leftarrow 0_{L,R} \);

\(E_0 \leftarrow 0_{L,R} \);

for \(t = 1 \) to \(T \) do

\(Y_t \) (random permutation of the image sequence);

// Abundance and variability estimation by PALM [BST13]

\((A_t, dM_t) \in \arg \min_{(A,dM) \in A_R \times D_t} f(Y_t, M^{(t-1)}, A, dM); \)

\(C_t \leftarrow \xi C_{t-1} + A_t A_t^T; \)

\(D_t \leftarrow \xi D_{t-1} + (dM_t A_t - Y_t) A_t^T; \)

\(E_t \leftarrow \xi E_{t-1} + dM_t; \)

// Endmember update [Mai+10, Algo. 2]

\(M^{(t)} \leftarrow \arg \min_{M \in \mathcal{M}} \hat{g}_t(M); \)

Result: \(M^{(T)}, \{(A_t, dM_t)\}_{t=1,\ldots,T} \)
Experiments on real data (I)

Data:

- sequence of AVIRIS HS images, acquired of the Mud Lake area (California, USA) between 2014 and 2015;
- 173 exploited bands, outlier corrupted pixels removed from Fig. 9d prior to the unmixing procedure.

![Image of Mud Lake dataset](image)

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15

Figure 9: Mud Lake dataset.

Remark:

- Sensitivity to outliers \(\sim\) robust unmixing of MTHS images (details in the manuscript).
Figure 10: Water abundance maps.
Figure 11: Vegetation abundance maps.
Experiments on real data (III)

(a) Water (VCA) (b) Soil (VCA) (c) Veg. (VCA)

(d) Water (NMF) (e) Soil (NMF) (f) Veg. (NMF)

(g) Water (OU) (h) Soil (OU) (i) Veg. (OU)

Figure 12: Estimated endmembers (red lines) and their variants affected by variability (blue lines).
Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm
 - Motivations
 - Simulations on synthetic data

4. Conclusion and perspectives
Motivations

- Images composed of a possibly large number of pixels \leadsto use of distributed unmixing procedures
 - master-slave configuration;

Figure 13: Single HS image divided into sub-images assigned to different nodes.

Figure 14: Illustration of a synchronous and an asynchronous distributed mechanism (idle time in white, transmission delay in light gray, computation delay in gray).
Motivations

- Images composed of a possibly large number of pixels \(\leadsto\) use of distributed unmixing procedures
 - master-slave configuration;

Figure 13: Sequence of images, each assigned to a computing node.
Motivations

- Images composed of a possibly large number of pixels \(\leadsto\) use of distributed unmixing procedures
 - master-slave configuration;
- Asynchronicity: account for possible discrepancies in the performance of the computational nodes, reduce idle time periods (compared to synchronous algorithms);

![Figure 13](image)

(a) Synchronous system.
(b) Asynchronous system.

Figure 13: Illustration of a synchronous and an asynchronous distributed mechanism (idle time in white, transmission delay in light gray, computation delay in gray).
Motivations

- Images composed of a possibly large number of pixels \leadsto use of distributed unmixing procedures
 - master-slave configuration;
- Asynchronicity: account for possible discrepancies in the performance of the computational nodes, reduce idle time periods (compared to synchronous algorithms);

![Image of synchronous and asynchronous distributed mechanisms]

Figure 13: Illustration of a synchronous and an asynchronous distributed mechanism (idle time in white, transmission delay in light gray, computation delay in gray).

- Significant number of asynchronous algos. recently proposed [CE16; Pen+16a; BJ13; PR15; Sra+16; Li+14; Dav16; Cha+16; FSS15; Pen+16b; Scu+17]
 - only (a few) synchronous distributed unmixing procedures in the literature [RR13; Sig+16; Sig+17].
Objective

Develop an asynchronous unmixing procedure inspired from the PALM algorithm [BST13; CPR16]

- the standard PALM algorithm easily leads to a synchronous distributed unmixing algorithm
 ~ reference to assess the interest of the asynchronicity;
- convergence guarantees in the synchronous [BST13; CPR16], and asynchronous case [Can+16].
Problem formulation

Unmixing problem

\[(A^*, M^*) \in \arg \min_{A,M} \left\{ F(A, M) + \alpha \Phi(A) + \iota_{A_R \cap \mathcal{N}}(A) + \beta \Psi(M) + \iota_{\{\cdot \succeq 0\}}(M) \right\} \quad \text{with} \]

\[F(A, M) = \sum_{i=1}^{I} f_i(M, A_i) = \frac{1}{2} \sum_{i=1}^{I} \| Y_i - MA_i \|_F^2 \]

\[A_{R,J} = \{ A \in \mathbb{R}^{R \times J} : \ a_n \in S_R, \ \forall n \in \{1, \cdots, J\} \} \]

\[S_R = \{ x \in \mathbb{R}^R : x_r \geq 0 \ \text{and} \ x^T 1_R = 1 \} \]

- \(\iota_S \) : indicator function of the set \(S \) (\(\iota_S = 0 \) if \(x \in S \), \(+\infty \) otherwise)
- \(\Phi \) et \(\Psi \) : appropriate convex penalties
 - in general, \(\Phi \) is separable to allow a distributed estimation (14);
 - in the following : \(\Phi = 0 \), \(\Psi \) is the mutual distance between the endmembers [Ber+04].
Asynchronous distributed unmixing algorithm (I)

- Each worker updates a subset of the abundance coefficients;
- The master node aggregates the information transmitted by the workers to update the endmembers.

Figure 14: Distribution of the estimation tasks between the computing nodes (for \(I = 3 \) data blocks).
Algorithm 4: Algorithm of the ith worker.

Data: $\mathbf{M}, \tilde{\mathbf{A}}_i$.

begin

Wait for updated endmembers from the master node, $(\mathbf{M}, \tilde{\mathbf{A}}_i)$;

$\hat{\mathbf{A}}_i \in \text{prox}_{\mathcal{A}_R,J} \left(\tilde{\mathbf{A}}_i - \frac{1}{c_{\mathbf{A}_i}} \nabla_{\mathbf{A}_i} f_i(\tilde{\mathbf{A}}_i, \mathbf{M}) \right)$;

Broadcast $\hat{\mathbf{A}}_i$ to the master node;

Result: $\hat{\mathbf{A}}_i$.

Asynchronous distributed unmixing algorithm (III)

Algorithm 5: Algorithm of the master node.

Data: A^0, M^0, $\mu \in]0, 1[\ (\mu = 10^{-6})$.

$\gamma^0 \leftarrow 1$, $k \leftarrow 0$;

while stopping criterion not satisfied, do

- Wait for \tilde{A}_{i^k} from one of the workers ;
 - **// Abundance update**
 $$ A^{k+1}_{i^k} = \begin{cases} A^{k}_{i^k} + \gamma^k (\tilde{A}_{i^k}^{k} - A^{k}_{i^k}), & i = i^k \\ A^{k}_{i^k}, & i \neq i^k \end{cases} $$
 - **// Endmember update**
 $$ \tilde{M}^{k} = \text{prox}_{\{\cdot \succeq 0\}} \left(M^{k} - \frac{1}{\nu_k} \nabla_{M} [F(A^{k+1}, M^{k}) + \beta \Psi(M^{k})] \right); $$
 $$ M^{k+1} = M^{k} + \gamma^k (\tilde{M}^{k} - M^{k}); $$
 - **// Relaxation coefficient update**
 $$ \gamma^{k+1} = \gamma^k (1 - \mu \gamma^k); $$
 - **// Broadcast new estimate to the worker i^k**
 Broadcast $(M^{k+1}, A^{k+1}_{i^k})$ to the worker i^k;
 $$ k \leftarrow k + 1; $$

Result: A^k, M^k.

Similar algorithm in presence of variability
Distributed unmixing in presence of variability

\[
y_n = \sum_{r=1}^{R} (m_r + d_{m,r,n})a_{r,n} + b_n \quad (15)
\]

Additional constraints:

\[
\|dM_n\|_F^2 \leq \nu, \text{ where } dM_n = [d_{m1,n}, \ldots, d_{mR,n}] \quad (16)
\]

Remarks:

- data distribution similar to the previous case;
- parallel estimation of the abundance coefficients and the variability terms;
- non-negativity constraints on the perturbed endmembers removed (limitation resulting from the asynchronicity).
Simulations on synthetic data (LMM) (I)

- Data: 3 HS images, composed of $R = 9$ endmembers, $L = 413$ spectral bands;
- Images: 100×100 pixels, corrupted by an additive Gaussian noise such that SNR = 30 dB;
- Performance evaluation for $I = 3$ processes;
- Initialization: VCA [NB05] / FCLS [HC01];
- Comparison of the algo. with its synchronous counterpart, both implemented in Julia [Bez+17].

Table 1: Simulation results on synthetic data.

<table>
<thead>
<tr>
<th></th>
<th>Sync.</th>
<th>Async.</th>
</tr>
</thead>
<tbody>
<tr>
<td>aSAM(\mathbf{M}) (°)</td>
<td>9.74e-01</td>
<td>1.04e+00</td>
</tr>
<tr>
<td>GMSE(\mathbf{A})</td>
<td>3.48e-04</td>
<td>5.25e-04</td>
</tr>
<tr>
<td>RE</td>
<td>1.05e-04</td>
<td>1.07e-04</td>
</tr>
<tr>
<td>aSAM(\mathbf{Y}) (°)</td>
<td>2.23e-02</td>
<td>2.24e-02</td>
</tr>
<tr>
<td>time (s)</td>
<td>1.39e+03</td>
<td>3.33e+02</td>
</tr>
</tbody>
</table>
Simulations on synthetic data (LMM) (II)

Figure 15: Objective function versus computation time for the synchronous and asynchronous unmixing algorithms (until convergence) [LMM].

Remarks:
- asynchrony promising in terms of computation time (to reach convergence);
- slight performance decrease.
Simulations on synthetic data (PLMM) (I)

- Data: 3 HS images, composed of \(R = 3 \) endmembers, \(L = 413 \) spectral bands;
- Images: 100 × 100 pixels, corrupted by an additive white Gaussian noise such that SNR = 30 dB.

Figure 16: Example of the endmembers (in red) and the corrupted endmembers (in blue) used in the experiments.
Simulations on synthetic data (PLMM) (II)

Figure 17: Objective function versus computation time for the synchronous and asynchronous unmixing algorithms (until convergence) [PLMM].

Remarks:

- the results between the synchronous and asynchronous algorithm can differ significantly;
- the asynchronous procedure can converge to a less interesting stationary point than its synchronous counterpart (main limitation).
Overview

1. A perturbed LMM to account for spatial variability

2. Online unmixing of MTHS images

3. A partially asynchronous distributed unmixing algorithm

4. Conclusion and perspectives
 - Conclusion
 - Perspectives
Conclusion

Variability modeling:

- Introduction of an explicit mixture model inspired from the total least squares problem, referred to as PLMM
 - represents variability within a single HS image;
 - spatially/spectrally characterizes the observed variability;
 - deterministic counterpart of the NCM [Ech+10].
Variability modeling:

- Introduction of an explicit mixture model inspired from the total least squares problem, referred to as PLMM
 - represents variability within a single HS image;
 - spatially/spectrally characterizes the observed variability;
 - deterministic counterpart of the NCM [Ech+10].

- Robust variant of the PLMM to represent temporal endmember variability and outliers (in the manuscript)
 - represents abrupt and smooth spectral variations occurring over time (information redundancy);
 - model developed within a Bayesian framework.
Conclusion

Variability modeling:

- Introduction of an explicit mixture model inspired from the total least squares problem, referred to as PLMM
 - represents variability within a single HS image;
 - spatially/spectrally characterizes the observed variability;
 - deterministic counterpart of the NCM [Ech+10].
- Robust variant of the PLMM to represent temporal endmember variability and outliers (in the manuscript)
 - represents abrupt and smooth spectral variations occurring over time (information redundancy);
 - model developed within a Bayesian framework.

Computational considerations:

- Study of an online unmixing algorithm to analyze multi-temporal HS images
 - exploits information redundancy between consecutive images;
 - compromise between computational cost and accuracy.
Conclusion

Variability modeling:

- Introduction of an explicit mixture model inspired from the total least squares problem, referred to as PLMM
 - represents variability within a single HS image;
 - spatially/spectrally characterizes the observed variability;
 - deterministic counterpart of the NCM [Ech+10].
- Robust variant of the PLMM to represent temporal endmember variability and outliers (in the manuscript)
 - represents abrupt and smooth spectral variations occurring over time (information redundancy);
 - model developed within a Bayesian framework.

Computational considerations:

- Study of an online unmixing algorithm to analyze multi-temporal HS images
 - exploits information redundancy between consecutive images;
 - compromise between computational cost and accuracy.
- Preliminary study of an asynchronous distributed unmixing algorithm
 - interest and limitations when compared to a synchronous version of the same algorithm.
Perspectives

- **Variability modeling**
 - physically inspired models preserving a distinction between variability modalities (non-linearities, illumination variations, ...);
 - promote different structures for the variability term;
 - estimation of the endmember number in presence of variability.
Perspectives

- **Variability modeling**
 - physically inspired models preserving a distinction between variability modalities (non-linearities, illumination variations, ...);
 - promote different structures for the variability term;
 - estimation of the endmember number in presence of variability.

- **Computational considerations**
 - automatic hyperparameter selection [Ste81; Del+14];
 - incorporate variable metrics into the proximal algorithms considered [CPR16; FGP15];
 - relaxation to the Ising field considered in the robust unmixing
 - leverage online estimation techniques.
Perspectives

▶ **Variability modeling**
 ▶ physically inspired models preserving a distinction between variability modalities (non-linearities, illumination variations, ...);
 ▶ promote different structures for the variability term;
 ▶ estimation of the endmember number in presence of variability.

▶ **Computational considerations**
 ▶ automatic hyperparameter selection [Ste81; Del+14];
 ▶ incorporate variable metrics into the proximal algorithms considered [CPR16; FGP15];
 ▶ relaxation to the Ising field considered in the robust unmixing
 ~ leverage online estimation techniques.

▶ **Application oriented developments**
 ▶ application to different context: medical imagery [Cav+17],
 astronomy [Rap+14; CB17];
 ▶ performance assessment for change detection, with possibly different imaging modalities [Pre+16; YZP17; Fer+17], data fusion [Wei+16].
Thank you for your attention.
Modeling spatial and temporal variabilities in hyperspectral image unmixing

Pierre-Antoine Thouvenin
PhD defense, IRIT/INP-ENSEEIHT, Toulouse

Supervisor
Nicolas Dobigeon
Professor at IRIT/INP-ENSEEIHT, Toulouse

Co-supervisor
Jean-Yves Tourneret
Professor at IRIT/INP-ENSEEIHT, Toulouse

DGA contact
Véronique Serfaty

University of Toulouse, IRIT/INP-ENSEEIHT

October 17, 2017
Backup slides

- Link between the PLMM and methods from the literature
- Synthetic variability generation
- PLMM: experiments on synthetic data
- Online unmixing: experiments on synthetic data
- Endmember number: geometrical illustration
- Robust unmixing of multi-temporal HS images
- References
- List of publications
The PLMM can be compared with two models from the literature:

- the Generalized NCM (GNCM) [HDT15]
 - the two models are equivalent when considering \(\mathbf{m}_{r,n} = \mathbf{m}_r + \mathbf{d}_{m,r,n} \);
 - distinction in terms of the adopted estimation approach

\[
y_n = \sum_{r=1}^{R} a_{r,n} \mathbf{m}_{r,n} + b_n,
\]

(17)

\[
\mathbf{m}_{r,n} \sim \mathcal{N}(\mathbf{m}_r, \text{diag}(\sigma_r^2)), \quad b_n \sim \mathcal{N}(\mathbf{0}_L, \psi_n^2 \mathbf{I}_L).
\]
The PLMM can be compared with two models from the literature:

- the Generalized NCM (GNCM) [HDT15]
 - the two models are equivalent when considering $m_{r,n} = m_r + d m_{r,n}$;
 - distinction in terms of the adopted estimation approach

\[
y_n = \sum_{r=1}^{R} a_{r,n} m_{r,n} + b_n,
\]

\[
m_{r,n} \sim \mathcal{N}(m_r, \text{diag}(\sigma_r^2)), \quad b_n \sim \mathcal{N}(0_L, \psi_n^2 I_L).
\]

- the Extended LMM (ELMM) [Dru+16] (explicit variability model)
 - variability represented in terms of spatially varying scaling factors ψ_n;
 - the scaling indeterminacy introduced ψ_n is partly addressed in the estimation algorithm proposed in [Dru+16]

\[
y_n = \psi_n \sum_{r=1}^{R} a_{r,n} m_r + b_n.
\]
Variability generation:

- term-wise product of reference endmembers with randomly generated affine functions
 - spatially varying signatures.

Figure 18: Reference endmembers (red lines) and 20 corresponding instances under spectral variability (cyan lines) involved in the synthetic data experiments.
Data: 128 × 64 HS images, composed of $R \in \{3, 6\}$ endmembers, with $L = 413$ bands;

Additive white Gaussian noise: SNR = 30 dB;

Variability generation: term-wise product of reference endmembers with randomly generated affine functions

- spatially varying signatures.

Figure 19: Reference endmembers (red lines) and 20 corresponding instances under spectral variability (cyan lines) involved in the synthetic data experiments.
Table 2: Simulation results on synthetic data in absence of pure pixels (GMSE(A)×10^{-2}, GMSE(dM)×10^{-4}, RE×10^{-4}) [(α,β) = (2.1×10^{-1}, 7.7×10^{-6}) for R = 3, (α,β) = (7.1×10^{-1}, 4.3×10^{-6}) for R = 6].

<table>
<thead>
<tr>
<th>R</th>
<th>aSAM(M) (°)</th>
<th>GMSE(A)</th>
<th>GMSE(dM)</th>
<th>RE</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>VCA/FCLS</td>
<td>5.06</td>
<td>2.07</td>
<td>/</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>SISAL/FCLS</td>
<td>4.43</td>
<td>2.16</td>
<td>/</td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td>FDNS</td>
<td>5.06</td>
<td>2.06</td>
<td>/</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>AEB</td>
<td>5.11</td>
<td>2.11</td>
<td>/</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>ELMM</td>
<td>5.05</td>
<td>1.78</td>
<td>6.86</td>
<td>4.34</td>
</tr>
<tr>
<td></td>
<td>ssmdBCD/ADMM (γ = 10^{-1})</td>
<td>4.56</td>
<td>1.49</td>
<td>6.21</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>ssmdPALM (ν = 5×10^{-2})</td>
<td>4.51</td>
<td>1.54</td>
<td>5.24</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>VCA/FCLS</td>
<td>6.55</td>
<td>2.52</td>
<td>/</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>SISAL/FCLS</td>
<td>6.04</td>
<td>1.63</td>
<td>/</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>FDNS</td>
<td>6.55</td>
<td>2.53</td>
<td>/</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>AEB</td>
<td>6.00</td>
<td>1.78</td>
<td>/</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>ELMM</td>
<td>6.54</td>
<td>1.98</td>
<td>4.13</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>ssmdBCD/ADMM (γ = 1)</td>
<td>6.19</td>
<td>2.19</td>
<td>2.89</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>ssmdPALM (ν = 2×10^{-1})</td>
<td>6.05</td>
<td>2.21</td>
<td>2.73</td>
<td>1.82</td>
</tr>
</tbody>
</table>
Figure 20: Estimated abundance maps obtained from the synthetic dataset in absence of pure pixels composed of $R = 3$ endmembers.

Figure 21: Spatial distribution of the estimated variability w.r.t. each endmember, presented in terms of its energy ($\|d_{m, r, n}\|_2/\sqrt{L}$ for the rth endmember in the nth pixel).
Experiments on synthetic data [OU] (I)

Data:

- sequences of 10 HS images of size 98×102, composed of 173 spectral bands;
- endmembers affected by smoothly varying endmember variability, smoothly evolving abundance maps;
- data corrupted by an additive white Gaussian, SNR = 30 dB.

Table 3: Simulation results on synthetic data ($\text{GMSE}(A) \times 10^{-2}$, $\text{GMSE}(dM) \times 10^{-4}$, RE $\times 10^{-4}$).

<table>
<thead>
<tr>
<th>R = 3</th>
<th>aSAM(\mathbf{M}) ($^\circ$)</th>
<th>GMSE(\mathbf{A})</th>
<th>GMSE($d\mathbf{M}$)</th>
<th>RE</th>
<th>aSAM(\mathbf{Y}) ($^\circ$)</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCA</td>
<td>16.8</td>
<td>4.20</td>
<td>/</td>
<td>0.37</td>
<td>2.81</td>
<td>1.4</td>
</tr>
<tr>
<td>SISAL</td>
<td>16.5</td>
<td>3.83</td>
<td>/</td>
<td>0.35</td>
<td>2.75</td>
<td>3</td>
</tr>
<tr>
<td>$\ell_{1/2}$ NMF</td>
<td>19.4</td>
<td>7.39</td>
<td>/</td>
<td>0.77</td>
<td>3.1</td>
<td>189</td>
</tr>
<tr>
<td>PLMM</td>
<td>17.2</td>
<td>4.22</td>
<td>0.65</td>
<td>0.12</td>
<td>1.53</td>
<td>380</td>
</tr>
<tr>
<td>OU</td>
<td>4.70</td>
<td>0.27</td>
<td>2.07</td>
<td>0.34</td>
<td>2.75</td>
<td>156</td>
</tr>
<tr>
<td>PALM</td>
<td>5.02</td>
<td>9.67×10^{-3}</td>
<td>1.81</td>
<td>0.34</td>
<td>2.75</td>
<td>37</td>
</tr>
<tr>
<td>DSU [HCJ16]</td>
<td>2.87</td>
<td>0.35</td>
<td>1.74</td>
<td>3.57</td>
<td>2.76</td>
<td>24</td>
</tr>
</tbody>
</table>
Figure 22: Abundance maps of the first endmember used in the synthetic mixtures. The top line indicates the theoretical maximum abundance value and the true number of pixels whose abundance is greater than 0.95 for each time instant.
Figure 23: Estimated endmembers from the synthetic hyperspectral time series (extracted endmembers are represented in red, variability in blue dotted lines).
Figure 24: Data projected on the $R-1$ simplex containing the data (linear model) (image taken from [Dob+09]).
Observations:

- some of the observed materials present moderate variations across time (man-made constructions, ...);

Figure 25: An example of a sequence of hyperspectral images, acquired over the same area at different time instants.
Observations:

- some of the observed materials present moderate variations across time (man-made constructions, ...);
- signatures corresponding to materials present in the different images
 ▶ realizations of reference endmembers \leadsto variability;

Figure 25: An example of a sequence of hyperspectral images, acquired over the same area at different time instants.
Observations:

- some of the observed materials present moderate variations across time (man-made constructions, ...);
- signatures corresponding to materials present in the different images
 - realizations of reference endmembers \(\rightsquigarrow\) variability;
- abrupt variations may occur (e.g., when water or vegetation are present in the observed scene)
 - new material or a sensor default \(\rightsquigarrow\) abrupt spectral changes \(\rightsquigarrow\) outlier w.r.t. the commonly shared materials.

![Hyperspectral images sequence](image)

(a) 10/04/14 (b) 02/06/14 (c) 19/09/14 (d) 17/11/14 (e) 29/04/15 (f) 16/10/15

Figure 25: An example of a sequence of hyperspectral images, acquired over the same area at different time instants.
Proposed approach:

▶ unmix a reference HS image to obtain an initial estimate for the endmembers;
▶ use / refine this result when unmixing the remaining images.

Model:

▶ represent smooth endmember variations as temporal variability;
▶ interpret abrupt spectral variations in terms of outliers.
Model and constraints

\[Y_t = (M + dM_t)A_t + X_t + B_t \]

(19)

\[A_t \succeq 0_{R,N}, \ A_t^T 1_R = 1_N, \ \forall t \in \{1, \ldots, T\} \]

(20)

Likelihood function

\[
p(Y | \Theta) \propto \prod_{t=1}^{T} (\sigma_t^2)^{-NL/2} \exp\left(-\frac{1}{2\sigma_t^2} \|Y_t - (M + dM_t)A_t - X_t\|_F^2\right)
\]

where \(\Theta = \{M, dM, A, X, \sigma^2\} \)

Objective: infer \(\Theta \) from \(Y \) using \(p(\Theta | Y) \)

\(~\sim~\) need for priors on the different parameters/hyperparameters involved in the model.

Parameter estimation: MCMC algorithm (Gibbs sampler) used to build estimators of the parameters of interest.
Hierarchical Bayesian model
[Thouvenin et al., submitted, 2017]

Figure 26: Description of the proposed Bayesian model using a directed acyclic graph (fixed parameters appear in boxes).
Abundance prior

- promotes smooth abundance variations (except when the corresponding pixel contains outliers)
- abundance sum-to-one constraint relaxed ($a_{n,t}^T 1_R \leq 1$) when outliers are present in the pixel (n, t) (apparition of new materials)

$$
a_{n,1} \mid x_{n,t} = 0_L \sim \mathcal{U}_{S_R}
$$

$$
a_{n,t} \mid x_{n,t} \neq 0_L \sim \mathcal{U}_{\tilde{S}_R}, \text{ for } t = 1, \ldots, T
$$

$$
p\left(a_{n,t} \mid x_{n,t} = 0_L, A \setminus \{a_{n,t}\}\right) \propto \exp \left\{-\frac{1}{2\varepsilon_n^2} \left([\mathcal{F}_{n,t}^1 \neq \emptyset] \|a_{n,t} - a_{n,\tau_{n,t}^1}\|_2^2\right)\right\}
$$

$$
1_{S_R}(a_{n,t}), \text{ for } t \geq 2
$$

with

$$
S_R = \{x \in \mathbb{R}^R \mid \forall i, x_i \geq 0 \text{ and } x^T 1_R = 1\}
$$

$$
\tilde{S}_R = \{x \in \mathbb{R}^R \mid \forall i, x_i \geq 0 \text{ and } x^T 1_R \leq 1\}
$$

$$
\mathcal{F}_{n,t}^1 = \{\tau < t \mid x_{n,\tau} = 0\}, \quad \tau_{n,t}^1 = \max_{\tau \in \mathcal{F}_{n,t}^1} \tau.
$$
Outlier prior

- promotes outlier sparsity [KM82; Lav93; BC05; BDT11; VS13];
- takes advantage of possible spatial correlations between these outliers by modeling $z_t \in \mathbb{R}^N$ as Ising-Markov random fields (correlations likely to occur when new materials appear)

$$p(x_{n,t} | z_{n,t}, s^2_t) = (1 - z_{n,t})\delta(x_{n,t}) + z_{n,t} \mathcal{N}_{\mathbb{R}^+_L}(0_L, s^2_t).$$
Hierarchical Bayesian model: priors (II)

Outlier prior

- promotes outlier sparsity [KM82; Lav93; BC05; BDT11; VS13];
- takes advantage of possible spatial correlations between these outliers by modeling $z_t \in \mathbb{R}^N$ as Ising-Markov random fields (correlations likely to occur when new materials appear)

$$p(x_{n,t} | z_{n,t}, s_t^2) = (1 - z_{n,t}) \delta(x_{n,t}) + z_{n,t} \mathcal{N}_{\mathbb{R}_+} (0_L, s_t^2).$$

Variability prior

- promotes smooth endmember variations from an image to another [Hal+15; HCJ16]

$$dm_{\ell,r,1} | m_{\ell,r} \sim \mathcal{N}_{\mathcal{I}_{\ell,r}} (0, \nu), \quad \mathcal{I}_{\ell,r} = [-m_{\ell,r}, +\infty)$$

$$dm_{\ell,r,t} | m_{\ell,r}, dm_{\ell,r,(t-1)}, \psi_{\ell,r}^2 \sim \mathcal{N}_{\mathcal{I}_{\ell,r}} \left(dm_{\ell,r,(t-1)}, \psi_{\ell,r}^2\right)$$

- ν penalizes the variability energy in the first image;
- $\psi_{\ell,r}^2$ controls the temporal evolution of the variability.
Priors assigned to the remaining parameters

Endmember prior

- Endmembers can be \textit{a priori} considered to live in a subspace of dimension $K \ll L$ (PCA or rPCA [Can+09]);
- Considering the decomposition used in [Dob+09] leads to

$$m_r = (I_L - UU^T)\bar{y} + Ue_r, \quad U^T U = I_K$$

where U is a basis of the subspace and \bar{y} is the sample mean of Y;
- Projected endmembers e_r are assigned a truncated multivariate Gaussian prior to ensure the non-negativity of m_r

$$e_r \sim \mathcal{N}_{\varepsilon_r}(0_K, \xi I_K), \text{ for } r = 1, \ldots, R. \quad (21)$$

Hyperparameter priors

- Conjugate inverse-gamma priors assigned to the noise (σ^2), the variability (ψ^2) and the outlier (s^2) variances, i.e.,

$$\sigma_t^2 \sim \mathcal{IG}(a_\sigma, b_\sigma), \quad \psi_{\ell,r}^2 \sim \mathcal{IG}(a_\psi, b_\psi), \quad s_t^2 \sim \mathcal{IG}(a_s, b_s) \quad (22)$$

where $a_\sigma = b_\sigma = a_\psi = b_\psi = a_s = b_s = 10^{-3}$.

P.-A. Thouvenin, IRIT/INP-ENSEEIHT
Spatial & temporal variabilities in HS unmixing
October 17, 2017 17 / 27
Algorithm 6: Proposed Gibbs sampler.

Input: $N_{bi}, N_{MC}, \Theta^{(0)}, \beta, \xi, a_{\psi}, b_{\psi}, a_{s}, b_{s}, a_{\sigma}, b_{\sigma}, \nu, \varepsilon^2.$

for $q = 1$ to N_{MC} do
 for $(n, t) = (1, 1)$ to (N, T) do
 Draw $a_{n,t}^{(q)} \sim p(a_{n,t} \mid y_{n,t}, \Theta \setminus \{a_{n,t}\})$;
 for $r = 1$ to R do
 Draw $e_{r}^{(q)} \sim p(e_{r} \mid Y, \Theta \setminus \{e_{r}\})$;
 for $t = 1$ to T do
 Draw $dM_{t}^{(q)} \sim p(dM_{t} \mid Y_{t}, \Theta \setminus \{dM_{t}\})$;
 for $(n, t) = (1, 1)$ to (N, T) do
 Draw $z_{n,t}^{(q)} \sim \mathbb{P}[Z_{n,t} \mid y_{n,t}, \Theta \setminus \{z_{n,t}\}]$;
 Draw $x_{n,t}^{(q)} \sim p(x_{n,t} \mid \Theta \setminus \{x_{n,t}\})$;
 for $t = 1$ to T do
 Draw $s_{t}^{2(q)} \sim p(s_{t}^{2} \mid \Theta \setminus \{s_{t}^{2}\})$;
 for $t = 1$ to T do
 Draw $\sigma_{t}^{2(q)} \sim p(\sigma_{t}^{2} \mid \Theta \setminus \{\sigma_{t}^{2}\})$;
 for $(\ell, r) = (1, 1)$ to (L, R) do
 Draw $\psi_{\ell,r}^{2(q)} \sim p(\psi_{\ell,r}^{2} \mid \Theta \setminus \{\psi_{\ell,r}^{2}\})$;
 for $t = 1$ to T do
 Draw β_{t} (Metropolis-Hastings step) ;

Result: $\{\Theta^{(q)}\}_{q=1}^{N_{MC}}$.

P.-A. Thouvenin, IRIT/INP-ENSEEIHT
Spatial & temporal variabilities in HS unmixing
October 17, 2017
Data generation:
- MTHS image composed of 10 images of size 50×50, $L = 413$ bands, affected by smooth time-varying variability and additive white Gaussian noise;
- mimics the emergence of a previously undetected material in a few pixels within specific images \Rightarrow outliers.

Algorithmic setting (synthetic data):
- $X_t^{(0)} = 0_{L,N}$, $dM_t^{(0)} = 0_{L,R}$, $z_{n,t}^{(0)} = 0$, $\sigma_t^{2(0)} = 10^{-4}$, $\psi_{\ell,r}^{2(0)} = 10^{-3}$, $s_t^{2(0)} = 5 \times 10^{-3}$, $\beta_t^{(0)} = 1.7$;
- numerical constants: $\varepsilon_n = 10^{-3}$, $\nu = 10^{-3}$;
- $N_{MC} = 400$ M-C iterations, with $N_{bi} = 350$ burn-in iterations.

Table 4: Simulation results on synthetic multi-temporal data ($\text{GMSE}(A) \times 10^{-2}$, $\text{GMSE}(dM) \times 10^{-4}$, RE $\times 10^{-4}$).

<table>
<thead>
<tr>
<th>R</th>
<th>aSAM(M) ($^\circ$)</th>
<th>GMSE(A)</th>
<th>GMSE(dM)</th>
<th>RE</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>VCA/FCLS</td>
<td>6.07</td>
<td>2.32</td>
<td>/</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>SISAL/FCLS</td>
<td>5.07</td>
<td>1.71</td>
<td>/</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>RLMM</td>
<td>5.13</td>
<td>2.04</td>
<td>/</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>DSU</td>
<td>5.18</td>
<td>0.53</td>
<td>11.5</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>OU</td>
<td>1.90</td>
<td>0.42</td>
<td>3.22</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>Proposed</td>
<td>2.03</td>
<td>0.15</td>
<td>1.85</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Figure 27: Abundance maps estimated for the third endmember for $t = 1$ to 6. The areas corrupted by outliers are delineated in red.
Figure 28: Ground truth (first row) and estimated labels (second row) obtained with the proposed method for $t = 1$ to 10, where each column corresponds to a time instant [0 in black, 1 in white].

Figure 29: Map of the re-scaled abundance estimation errors for the third endmember at time $t = 2$ (from left to right: true abundances, estimation error of VCA/FCLS, SISAL/FCLS, rLMM, OU and the proposed method). Except for the proposed method, the results exhibit notable errors in pixels corrupted by outliers (area in red).
Figure 30: Endmembers (red lines) and corrupted endmembers (blue dotted lines).
Figure 31: Endmembers (red lines) and corrupted endmembers (blue dotted lines).
Experiments on real data (I)

Data:

- real sequence of 100×100 HS images acquired by the AVIRIS sensor, Mud Lake, California, USA;
- 173 exploited bands, out of the 224 available bands.

Figure 32: Scenes used in the experiment, given with their respective acquisition date. The area delineated in red in Fig. 32e highlights a region known to contain outliers.
Figure 33: Soil abundance map recovered by the different methods (in row) at each time instant (in column) [VCA/FCLS, SISAL/FCLS, RLMM, OU, MCMC].
Figure 34: Outlier energy recovered by RLMM [FD15] and the proposed MCMC method.

Figure 35: Non-linearity maps estimated by [Alt+13] applied to each image with the SISAL-extracted endmembers.
Figure 36: Extracted endmembers (red lines) and perturbed endmembers (blue lines).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Conference/Proceedings</th>
<th>Pages/Volume</th>
<th>Citations</th>
</tr>
</thead>
</table>

References IV

References V

References VII

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
<th>Journal or Conference</th>
<th>Details</th>
</tr>
</thead>
</table>

References XV

List of publications

International journals

International conferences

List of publications II

National conferences